### Problem 18

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
```   3
7 4
2 4 6
8 5 9 3```
That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:
```              75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
```

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)

### Solution 1: Harsh code

`````` s='''75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23'''

lroute = list(map(int, s.split("\n")[len(s.split("\n"))-1].split()))
for i in s.split("\n")[len(s.split("\n"))-2::-1]:
route = list(map(int, i.split()))
at = 0
temp = []
for j in route:
if lroute[at] > lroute[at+1]:
temp += [j+lroute[at]]
#print(temp)
else:
temp += [j+lroute[at+1]]
#print(temp)
at += 1
lroute = temp

print(lroute[0])
``````

Though run fast, it takes time to understand.
The output: 1074.